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Abstract

The regional distribution and driving factors of total carbon emissions have been the focus of 
considerable research. However, carbon intensity rather than total carbon emissions has been selected 
as the emissions reduction index in China. The Chinese government has committed to reducing carbon 
intensity by 60-65% from 2005 levels. Currently, limited academic attention has been given to the regional 
distribution and driving factors of carbon intensity. To explore the means of achieving the carbon intensity 
target in China, Gini coefficients were employed in this paper to investigate regional differences in carbon 
intensity across 30 provinces from 1995 to 2014. Moreover, the FGLS (feasible generalized least squares) 
method was applied to identify the key influencing factors of carbon intensity at the national and three 
regional levels. The results indicate that:
1. Chinese inter-provincial Gini coefficients of carbon intensity have increased steadily in recent years, 

which indicates that the difference in carbon intensity between provinces in China has widened. 
2. Economic growth, foreign direct investment, and trade openness were negatively correlated with carbon 

intensity. Conversely, coal consumption, industrial proportion, and urbanization were positively 
correlated with carbon intensity. Moreover, urbanization has proven to be the most important factor 
affecting China’s carbon intensity.

3. The dominant cause of carbon intensity varies by region. In particular, the dominant cause of carbon 
intensity in low- and medium-level regions is urbanization. However, the dominant cause of carbon 
intensity in high-level regions is coal consumption.
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Introduction

Carbon dioxide is a significant factor contributing 
to global climate change, and the reduction of carbon 
dioxide emissions has therefore become a common goal 
for the international community dedicated to addressing 
climate change on a global scale [1]. In 2014 China 
produced 28.06% of global carbon dioxide emissions 
[2]. As a responsible developing country, China has 
made a commitment to the world that its carbon dioxide 
emissions will peak in 2030, after which carbon dioxide 
emissions per unit of GDP (also referred to as carbon 
emission intensity) will be reduced 60-65% of 2005 
values [3]. This goal has been reallocated to each 
province by setting up more specific targets. However, 
China is a vast country with marked regional differences 
in energy consumption among provinces [4-5]. Moreover, 
these regional differences pose a serious challenge to 
meeting the scheduled carbon emissions goal [6-7]. A 
better understanding of carbon emissions intensity (CI) 
and its driving factors among provinces will contribute 
to developing scientific and practical emissions reduction 
policies to achieve China’s CI goal.  

Previous literature mainly focused on two aspects 
of CI: regional differences and driving factors. Some 
researchers have argued that energy intensity (EI) can 
represent most information in CI. Hence, there has been 
sufficient research focusing on the regional differences in 
EI, drawing many meaningful conclusions. These studies 
can be broadly divided into two general types. Indexes, 
including degree of concentration (the Gini and Theil), 
are used by the first type to analyze the inequality of EI 
[8-14]. For instance, by utilizing the Theil index and its 
decomposition by group, Duro [10] studied inequality  
in energy intensity in 1990-2011 and found that genera-
lized reduction in energy intensities on a global level 
coincided with an improvement in their international 
equality. Since then, Theil’s second measure has been used 
by Alcantaraa and Duro [13] for analyzing international 
energy intensity differences between OECD countries. 
Furthermore, this study examined the contributions of 
different groups of countries to this inequality. A similar 
study was also conducted by Yue et al. [15]. The second 
research type focuses on the convergence on energy 
intensity [16-20]. One example of such scholarship is the 
research by Burnett and Madariaga [19], who extends  
a neoclassical growth model and examines the 
implications for convergence in economic growth and 
energy intensity across U.S. states. They found strong 
evidence of convergence in energy intensity among a 
set of advanced economies. Moreover, Herrerias [21] 

investigated the convergence process of EI on a global 
scale over the period 1971-2008, finding that developing 
countries converge at higher energy intensity ratios, 
while in the case of developed countries there are at 
least two convergence groups. Similar studies were also 
undertaken in China by Zhao et al. [17], who found that 
CI were converging in Chinese provinces. Overall, only 
limited academic attention has been given to regional 
differences in CI.

With regard to the driving factors of CI, research is 
increasingly being conducted in different countries and 
regions. Various methods have been used to examine 
these factors: the LMDI method [22-24], the IDA method 
[25-26], the IPAT model [27], and the STIRPAT model 
[28] being the most popular. The decomposition method is 
an important tool employed in exploring the determinants 
of carbon intensity. Using the LMDI method, Zhang  
et al. [22] explored the driving factors of CI in 29  
Chinese provinces and found that energy consumption 
intensity played an important role in the rapid decrease 
in CI from 1995 to 2012. Similar studies were also 
undertaken in Portugal by Robaina Alves and Moutinho 
[29]. Compared with the LMDI decomposition method, 
regression analysis and comparative analysis provide 
comprehensive results about each factor. Based on an 
improved STIRPAT regression model, taking China as 
an example, Wang et al. [28] investigated key factors 
affecting CI at the national level and at eight economic 
regional levels in China. They found that there were 
obvious differences in regional development; in different 
regions, the relationship between the variables is 
different. Therefore, each region should pay heed to its 
own particular characteristics. 

As mentioned above, most previous literature 
considers energy intensity instead of carbon intensity as 
the research object, which weakens its utility for policy 
implications in China. Moreover, much literature focuses 
separately on the regional differences or influencing 
factors of CI. Limited research has combined the regional 
differences with the driving factors of CI. In addition, 
the majority of research has divided China using three 
economic regions, ignoring the significant disparity of 
CI among provinces. To overcome these shortcomings, 
this article first calculated the Gini coefficients of CI  
in 30 provinces in China during 1995-2014. Then the 30 
provinces were ranked and divided into three groups: 
low-, medium-, and high-level regions. Finally, by using 
the FGLS method based on panel data, this paper further 
investigates the factors affecting CI at the national and 
three regional levels.

4. Based on these empirical findings, policy recommendations to reduce carbon intensity were  
proposed. In summary, the improvement of urbanization quality in both low- and medium-level 
regions is urgently needed. However, optimizing the energy structure is essential to carbon intensity 
reduction in high-level regions.

Keywords: carbon intensity, Gini coefficient, panel date analysis, FGLS, China
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Materials and Methods 

Regional Differences in Carbon Intensity 

Measuring regional differences in the CI of fossil 
energy consumption is the first step in researching carbon 
intensity reduction. There are several ways to examine 
regional differences in CI, such as the Theil index, 
coefficient of variation (CV), and Gini coefficient (Gini) 
– with each method having pros and cons. Therefore, this 
paper measured the dispersion and concentration of CI by 
combining CV with Gini [30]. The formulas for the CV 
and Gini coefficient are as follows:

                     (1)

                   (2)

…where yi is the CI in province i, μ denotes the national 
average CI, and n represents the number of provinces. 
 

Panel Unit Root Tests

Regression conducted in relation to non-stationary 
variables may produce spurious regression [31]. As such, 
the balanced panel data should be subjected to a unit root 
test to prove the stationarity of the variables. Panel unit 
root tests are widely used because they are more powerful 
than tests based on normal time series and cross-sectional 
data [32]. The methods for unit root testing panel data 
include the LLC, IPS, ADF, PP, and Hadri tests [28].

Panel Co-Integration Tests

The Pedroni and Kao tests are typically carried out to 
test co-integration relationships among variables for panel 
data [32]. These two approaches have good performance 
when testing time sequences over a short period. The null 
hypothesis of the Pedroni and Kao tests is that there is no 
co-integrational relationship between variables.

Model of Driving Factors

The IPAT (impact = population × affluence × 
technology) identity was first proposed in the early 1970s. 
It is widely utilized and has been regarded as an easily 
understandable framework for analyzing the influence of 
human factors on the environment. It can be described 
with the following equation:

I = PAT                                (3)

…where I represents the environmental pressure 
indicator (i.e., CI in this study), P is the total population, 

A indicates the average affluence, and T refers to the level 
of technological development.

However, the obvious flaw of the IPAT model is that 
it can only analyze a limited number of variables. To 
overcome its disadvantages, York et al. [33] reformed 
the IPAT model into a random form and established the 
STIRPAT (stochastic impacts by regression on population, 
affluence and technology), which is described as:

I = a Pb Ac Td e                           (4)

…where a is a constant term; I, P, A, and T have the 
same meanings as those in Eq. (3); b, c, and d are the 
exponential terms of P, A, and T, respectively; and e is the 
error term of the model.

The STIRPAT model is a multivariable nonlinear 
model and is often used in double logarithmic form: 

InI = a + bln(P) + cln(A) + dln(T) + e    (5)

Because the STIRPAT model can be expanded to 
include more influencing factors, this method became a 
well-known technique that was widely used to explore 
the influencing factors of the environment. Depending  
on different research needs and targets, the STIRPAT 
model allows for the introduction of additional factors 
to carry out different kinds of empirical research. 
Considering the characteristics of energy consumption  
in China and learning from relevant research, we  
expanded the STIRPAT model by incorporating GDP 
per capita [34], proportion of industries [11], coal 
consumption [3], urbanization level [3], foreign direct 
investment [28], and trade openness [11] into the model. 
Then the STIRPAT model in this study was described as 
follows:

InCI = a + bln(EI) + cln(SI) + dln(CP) + 
fln(URL) + gln(TO) + hln(FDI) + e 

(6)

…where CI is the carbon intensity that indicates the  
impact on the environment, EL refers to the GDP per 
capita and is introduced to analyze the influence of 
economic growth on environmental pressure, SI is the 
share of industrial value-add in the GDP and is introduced 
to study the influence of industrial structure change  
on CI, CP is the proportion of coal consumption and is 
used to study the influence of energy structure change 
on CI (because coal has the highest carbon emissions 
coefficient among all primary energy sources), and UL 
represents urbanization level and is used to study the 
influence of urbanization on CI. Two additional factors, 
namely TO (total import and export volume in overall 
GDP) and FDI (foreign direct investment in overall GDP) 
are used to study the influence of trade liberalization 
on CI. In Eq. (6), a is a constant; b, c, d, f, g, and h are 
coefficients of each variable; and e is the random error 
term.
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Data Description

In this paper, the study period ranges from 1995 to 2014. 
CI is total carbon emissions divided by GDP. The data on 
carbon emissions used in this research was derived from 
the International Energy Agency (IEA) [2]. Because CO2 
emissions data for each province in China are released 
neither by the IEA nor the Chinese Bureau, we calculated 
the CO2 emissions in each province based on the method 
proposed by Yue [15]. Moreover, we selected GDP per 
capita to indicate economic level. The urbanization level 
was calculated by dividing the urban population by total 
population. Data related to the industry proportion were 
calculated by dividing industry-added value by overall 
GDP. Meanwhile, the coal proportion is the ratio of 
coal consumption to total primary energy consumption. 
Foreign direct investment and trade extroversion are the 
proportion of actual use of foreign direct investment and 
total import and export volume in GDP, respectively. All 
the data for GDP, total population, industry-added value, 
and total import and export volume were obtained from 
the China Statistical Yearbook (1996-2015) [35] and the 
data on foreign direct investment came from the China 
Statistical Yearbook of Commerce (2015) [36]. The panel 
data used in this research was selected from 30 provincial 
statistical yearbooks in China (except for Tibet, Hong 
Kong, and Macao; note that Chongqing was established 
in 1997, so the data for Chongqing in 1995 and 1996 were 
back-calculated using its average growth rate [28]). To 
eliminate the effects of inflation on GDP, this research 
used GDP at 1995 levels. The statistical descriptions of 

all variables in this research are shown in Table 1. Means 
of CI, EL, IP, CP, URL, TO, FDI are 0.41 t/10,000 yuan, 
18,632.44 yuan/person, 45.19%, 62.85%, 45.73%, 30.93%, 
and 3.10%, respectively, among which CI ranges from 
0.08 t/10,000 yuan to 2.44 t/10,000 yuan. EL ranges from 
2,316.35 yuan/person to 88,853.60 yuan/person. FDI has 

Fig. 1. CI of China 1995-2014.
Fig. 2. Regional distributions of carbon intensity in: a) 1995 and 
b) 2014.

Symbol Variable Unit Mean Std. Dev Min Max

CI Carbon emission intensity t/10,000 Yuan 0.41 0.31 0.08 2.44

EL Economic level Yuan/person 18,632.44 15,550.10 2,316.35 88,853.60

IP Industry proportion % 45.19 0.08 19.74 59.05

CP Coal proportion % 62.85 0.15 14.26 90.44

URL Urbanization level % 45.73 16.07 20.39 89.61

TO Trade openness % 30.93 0.39 0.34 205.12

FDI Foreign direct investment % 3.10 3.12 0.05 24.25

Table 1. Statistical description of variables in China, 1995-2014.
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a minimum range of 19.74% to 59.05%, while TO has a 
maximum range of 0.34% to 205.12%.

Results and Discussion

Changes in CI of China

The CI in China over the period 1995-2014 has 
been calculated as shown in Fig. 1. The horizontal axis 
represents the year while the vertical axis represents the 
CI. The values of CI in China decreased from 1995 to 2014. 
Specifically, China’s CI has declined from 0.501 10,000 
ton (tc) per 10,000 yuan in 1995 to 0.204 tc per 10,000 
yuan in 2014, with an annual growth rate of -4.62%. In 
terms of an evolutionary trend in CI variation, the whole 
20 years can be divided into three phases: 1995-2002, 
2002-08, and 2008-14. Changes in CI were markedly 
different in each of these three phases. During the first 
period, China’s CI dropped at an annual rate of 6.79%; 
in the second period, China’s CI increased from 2002 
to 2005 and then decreased at an annual rate of 3.09%; 
during the third period, China’s CI decreased steadily at 
an annual rate of 6.91%.

Distribution of Carbon Intensity among 
Provinces in China 

The spatiotemporal CI dynamics in China for 1995-
2014 are mapped in Fig. 2. CI was classified into four 
groups using the Jenks Natural Breaks Classification 
method [37], which is done by seeking to minimize the 
average deviation from the class mean while maximizing 
the deviation from the means of the other groups. Great 
disparities in CI have been identified in China, as shown 
in Fig. 2. In 1995 the CI in Shanxi was largest, exceeding 
2.440 tc per 10,000 yuan, which is approximately 
23.05 times the CI in Hainan, whose CI was lowest at 
approximately 0.106 tc per 10,000 yuan. With regard to the 
main groups of CI in this year, there are eight provinces in 
the first group, 15 in the second group, and six in the third 
group, with Cis of 0.683-1.086, 0.333-0.682, and <0.332, 
respectively. 

In 2014 Ningxia, Shanxi, and Xinjiang ranked as the 
top three, and the values of CI in these three provinces 
were 1.322, 0.856, and 0.707 tc per 10,000 yuan, 
respectively. Moreover, the CI of Ningxia was 16.11 
times larger than that of Beijing. At this time, the CI in 
21 provinces, mainly located in Southeast China, was not 
more than 0.332 tc per 10,000 yuan. In contrast, provinces 
in northwestern China generally had higher CI values. In 
general, the provinces with low CI were usually located 
in southern China, while those with high CI were mainly 
located in northwestern China.

Furthermore, the average CIs of 30 provinces during 
1995-2014 are illustrated in descending order in Fig. 3. 
Average CI varied greatly among different provinces  
in China. Specifically, Shanxi, Ningxia, and Guizhou 
ranked as the top three for average CI. Conversely,  
Hainan, Fujian, and Guangdong had the lowest average  
CI. In particular, Shanxi’s average CI was 10.17 times 
larger than Guangdong’s. Considering the research 
objective of this paper, we improved the classification 
method that was adopted by Chen [4]. To be specific, we 
used CI instead of energy consumption per capita as the 
indicator and divided 30 provinces into three regions: low-
, medium-, and high-level. The results of this grouping 
are (Fig. 4):
 – Low-level CI provinces: Chongqing, Hunan, Beijing, 

Shanghai, Jiangsu, Guangxi, Zhejiang, Hainan, 
Fujian, and Guangdong.

 – Medium-level CI provinces: Jilin, Heilongjiang, 
Yunnan, Henan, Anhui, Hubei, Tianjin, Shandong, 
Sichuan, and Jiangxi.

 – High-level CI provinces: Shanxi, Ningxia, Guizhou, 
Inner Mongolia, Gansu, Xinjiang, Hebei, Liaoning, 
Qinghai, and Shannxi 
Fig. 4 shows that provinces with low average CI 

were usually located in southeastern China, whereas the 
provinces with high average CI were mainly distributed 
in northern China. These three regions will be used to 
identify the influencing factors of CI separately on the 
basis of panel data.

Fig. 4. Three regions with different grades of CI.

Fig. 3. Average CI of each province in China during 1995-2014. 
(in 1995 figures).
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CV and Gini Coefficient of CI 

Regarding regional differences in CI within China, 
two benchmark indices of inequality have been calcu-
lated during the period 1995 to 2014 (Table 2). The 
results unanimously indicate a rise in inequalities 
from 1995 to 2014, suggesting that the overall gap in 
CI between various provinces in China has increased 
gradually. As shown in Table 2, CV increased steadily 
from 0.693 in 1995 to 0.900 in 2014. Similarly, the  
Gini coefficient rose steadily from 0.314 to 0.408  
during the same period. Taking into account the trends 
of the CV and Gini coefficient, the whole period can 
be divided into two phases: 1995-2007 and 2008-14. In 
the first phase, the Gini coefficient fluctuated approxi- 
mately 0.34. However, the Gini coefficient increased 
continuously from 0.342 in 2008 to 0.408 in 2014. 
Although the value of the CV was larger than that of 
the Gini coefficient over the period from 1995 to 2014, 
the variation trend of CV is similar to that of the Gini 
coefficient. 

However, the particularity of the sub-period 2000-
03 in the first phase should be noted. Table 2 shows 
that both the CV and the Gini coefficient increased 
stably during 2000-04. The underlying reason may be 
the implementation of a Western development strategy 
in 2000. In the following four years, 2000-03, energy 
consumption experienced a sharp increase, leading to a 
rapid rise in CI, and the regional difference in CI widened. 
For instance, energy consumption in Ningxia increased 
from 13.55 million tons of standard coal in 2000 to 19.80 
million tons in 2001, with a growth rate of up to 46%. 
Additionally, 2008 is unique in the study period. Since 
the outbreak of the financial crisis that year, China has 
actively promoted industrial restructuring to steadily 
reduce CI. However, both the CV and the Gini coefficient 
increased rapidly from 2009 to 2014, which indicates that 
the interregional differences in CI continued to expand 
over the same period. Moreover, the continued expansion 

of regional differences in CI poses new challenges for 
China’s CI targets.

Panel Unit Root Test Results

To overcome the errors inherent in some test methods, 
we conducted panel unit root tests for variables using the 
LLC and IPS tests (the LLC test for common root, and 
the IPS test for individual root). If both the LLC test and 
the IPS test reject the null hypothesis of non-stationarity, 
all the variables were stationary; otherwise, the variables 
were non-stationary. The results of the unit root tests 
are shown in Table 3, showing that all variables had a 
unit root at the 5% level of significance and so were not 
stationary. However, the first-order difference sequences 
of all the variables were stationary, thereby rejecting the 
null hypothesis of non-stationarity at less than a 1% level 
of significance. Based on these findings, the panel data 
were tested to see whether there was a co-integrational 
relationship between variables.

Panel Data Co-Integration Results

When time span T is small, the Kao test outperforms 
the Pedroni test; when T is large (T>20), the Kao test is 
worse than the Pedroni test [28]. In this study T = 20; 
therefore, both the Pedroni and Kao tests are used to  
test whether there is a long-term stable relationship 
among variables. The test results are presented in Table 
4. In a small sample, short-term, econometric analysis, 
the results of the panel ADF statistic and the group ADF 
statistic are the best. When the test conclusion differs, the 
results of panel ADF statistic and group ADF statistic 
should be considered first [3]. As shown in Table 4, panel 

Year CV Gini Year CV Gini

1995 0.693 0.314 2005 0.719 0.345 

1996 0.696 0.321 2006 0.724 0.348 

1997 0.688 0.331 2007 0.710 0.342 

1998 0.704 0.329 2008 0.701 0.342 

1999 0.658 0.320 2009 0.721 0.350 

2000 0.668 0.322 2010 0.735 0.351 

2001 0.687 0.324 2011 0.817 0.373 

2002 0.734 0.330 2012 0.831 0.383 

2003 0.808 0.363 2013 0.874 0.400 

2004 0.728 0.343 2014 0.900 0.408 

Table 2. Cross-province differences in carbon intensities through 
summary indices from 1995 to 2014.

Llc (common root) IPS (individual root)

lnCEI -1.540 0.062 1.285 0.901 

lnEI -1.550 0.061 5.731 1.000 

lnCP 1.952 0.975 0.985 0.838 

lnSI -1.451 0.073 1.670 0.953 

lnURL 1.158 0.877 8.196 1.000 

lnFDI -3.950 0.000 -1.437 0.075 

lnTO -0.886 0.188 -0.615 0.269 

D(lnCEI) -12.151 0.000 -11.990 0.000 

D(lnEI) -2.840 0.002 -3.153 0.001 

D(lnCP) -14.758 0.000 -14.020 0.000 

D(lnSI) -11.076 0.000 -9.357 0.000 

D(lnURL) -9.901 0.000 -8.823 0.000 

D(lnFDI) -15.587 0.000 -14.904 0.000 

D(lnTO) -16.825 0.000 -13.673 0.000 

Table 3. Results of unit root tests.
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ADF, group ADF, panel PP, and group PP tests all reject  
the null hypothesis that there is no co-integration 
relationship at the 5% significance level. Thus, it is 
supported that there is a co-integration relationship  
among CI and other independent variables. The results 
of the Kao test shown in Table 4 also reject the null 
hypothesis, which further supports the conclusion  
that there is a co-integrational relationship between 
variables.

Parameter Estimation of the Panel Models

From the measured results of the CV and the Gini 
coefficient mentioned above, the interregional differences 
in CI become wider. To further study the factors 
influencing CI, this paper has applied panel data models. 
First, all the data from the 30 provinces were used to build 
model 1 simulating the whole of China. Then, models 2 
through 4, representing the regions of low-level, medium-
level, and high-level CI, were set up with the data from 
each region.

Panel models often violate standard ordinary least 
squares (OLS) assumptions [38]. Three post-estimation 
tests for autocorrelation, cross-sectional independence, 
and group-wise heteroscedasticity for the 30 panels 
were performed. The result of the Wooldridge test [39] 
for autocorrelation in the panel data showed evidence 
of autocorrelation in the idiosyncratic errors, as it was  
F(1, 29) = 144.979, p = 0. The p-value rejects the hypothesis 
H0 of no autocorrelation. The Pesaran test [40] for cross-
sectional independence in a fixed effects regression 
model clearly indicated that cross-sectional independence 
is proven (Pesaran’s test of cross-sectional independence 
= 11.365, p = 0). The modified Wald test [41] for group-
wise heteroskedasticity in a fixed effect regression model 
clearly indicated that disturbances are heteroscedastic 
(χ2(30) = 6,720.51, p = 0, which rejects the hypothesis 
H0 of homoskedasticity). The above tests indicate that 
the optimal method choice is feasible generalized least 
squares (FGLS). The regression results from all four 
models are listed in Table 5.

Independent variable

Dependent variable (LNCEI)

China Low Medium High

model1 model2 model3 model4

Coef. p Coef. p Coef. p Coef. p

lnEL -0.764 0.000 -0.610 0.000 -0.678 0.000 -0.551 0.000

lnCP 0.459 0.000 0.171 0.062 0.856 0.000 1.086 0.000

lnSI 0.672 0.000 0.378 0.000 0.513 0.000 0.923 0.000

lnURL 1.503 0.000 1.479 0.000 1.009 0.000 0.888 0.000

lnFDI -0.242 0.000 0.016 0.652 -0.129 0.000 -0.128 0.000

lnTO -0.126 0.000 -0.193 0.000 0.139 0.000 0.004 0.841

C 1.218 0.000 -1.266 0.011 2.613 0.000 2.621 0.000

Observation 600 200 200 200

Table 5. Results of regression of models.

Weighted
StatisticStatistic p p

Pedroni test

Panel v-Statistic -0.957 0.831 -3.362 1.000

Panel rho-Statistic 4.636 1.000 4.385 1.000

Panel PP-Statistic -4.534 0.000 -8.671 0.000

Panel ADF-Statistic -2.580 0.005 -3.917 0.000

Group rho-Statistic 6.199 1.000

Group PP-Statistic -10.960 0.000

Group ADF-Statistic -2.075 0.019

Kao test ADF -2.765 0.003

Table 4. Results of co-integration tests.



1338 Wu R., et al.

Determinants of CI from a National 
Perspective

In model 1 (see Table 5), the estimated coefficients of 
all variables were statistically significant, and the results 
conform to those from previous research. The estimated 
coefficients of EL, FDI, and TO were negative, which 
indicated that increasing economic development, foreign 
direct investment and trade openness will decrease 
China’s CI. Among these three variables, economic 
development is the most important factor, with elasticity 
of -0.764, indicating that a 1% increase in economic level 
would lead to a 0.764% decrease in CI when other factors 
remain constant. In contrast, the regression coefficients 
of CP, SI, and URL were positive, which reflected the 
fact that a rise in industrial proportion, coal consumption, 
and urbanization level will increase CI. Furthermore, the 
regression coefficient of URL is 1.503, the largest of the 
coefficients, which means that rapid urbanization will 
result in a marked increase in CI. Over the past decades, 
China has experienced rapid urbanization. Specifically, 
the urbanization level has increased rapidly from 26.4% 
in 1990 to 54.7% in 2014, and is expected to reach 60% 
by 2020 [42]. It is recognized that urbanization will lead 
to an increase in direct and indirect household carbon 
emissions [43], and consequently result in higher CI. In 
addition, the quality of urbanization in China is relatively 
low, and the process of urbanization is accompanied by 
a large amount of energy consumption, which also has 
contributed to an increase in CI. 

Generally, it was found that economic development, 
foreign direct investment, and trade openness can 
decrease CI. Additionally, the decline in the industrial 
proportion and coal consumption will also inhabit CI. 
However, the rise in urbanization inevitably increases CI. 
Accordingly, to achieve its CI reduction targets, China 
should sustainably develop its economy, vigorously adjust 
its industrial structure, optimize its energy structure, 
and continue to improve trade openness. Because the 
urbanization level proved to be the most important factor 
affecting China’s CI, China should pay attention to the 
quality rather than the speed of urbanization.

Determinants of CI from a Regional 
Perspective

In the low-level region model 2, the estimated 
coefficients of EL, SI, URL, and TO were statistically 
significant. The regression coefficient of URL is the 
largest, followed by economic development (absolute 
value). Therefore, controlling the speed of urbanization 
rationally and developing its economy sustainably are 
essential for CI reduction in this region. Moreover, in the 
medium-level region model 3, the estimated coefficients 
of all variables were also statistically significant. In this 
model, the regression coefficient of URL is the largest, 
with a value of 1.009, which indicates that urbanization 
level is the most important factor promoting the increase 
in CI. Moreover, energy structure (CP) was followed by 

URL. Accordingly, improving the quality of urbanization 
and optimizing the energy structure is the medium-level 
region’s top priority to achieve low-carbon development. 
Finally, in the high-level region model 4, the estimated 
coefficients of variables were all statistically significant, 
with the exception of TO. Different from model 2 and 
model 3, the regression coefficient of CP is the greatest 
in model 4, followed by industrial structure (SI). Hence 
adjusting the industrial structure and optimizing the 
energy structure are urgent tasks for the high-level 
region to achieve CI reduction targets. In summary, 
the dominant factors that affect CI vary widely across 
regions. Furthermore, to reveal the intrinsic mechanism 
of the variation of the coefficient of the same variable in 
different regions, it is necessary to conduct a concrete 
and in-depth analysis of each specific variable. The 
regression coefficients of EL in all models were 
negative and statistically significant, which provided 
sufficient evidence of the role of economic development 
in promoting a lower CI. Specifically, the regression 
coefficients of EL were -0.610 in the low-level region, 
-0.678 in the medium-level region, and -0.551 in the high-
level region. From the absolute value of EL’s coefficient, 
EL is lowest in the high-level region and highest in the 
medium-level region, which illustrates that the potential 
for economic development on CI reduction is greatest in 
the medium-level region. 

As for the variable CP, the regression coefficients 
of this variable in all models were positive, but not 
statistically significant at the 5% significance level in 
model 2. As Table 5 shows, energy structure has a strong 
impact on CI in both the medium- and high-level regions. 
However, the effect of energy structure on CI in the low-
level region was not significant. Moreover, the regression 
coefficient of CP in the high-level region was greater than 
that in the medium-level region, which indicated that the 
potential for energy structure adjustment on CI reduction 
is greatest in the high-level region. Take 2014, for 
instance: the proportion of coal consumption was 61.50% 
in the medium-level region, and it was up to 69.24% in the 
high-level region. 

With regard to the variables SI and URL, the 
regression coefficients of these two variables in all models 
were positive and statistically significant. To be specific, 
the coefficient of SI in model 4 is the greatest, as is the 
coefficient of URL in model 2. The results show that  
the impact of industrial structure on CI is greatest in 
the high-level region when compared to the other two  
regions. Take 2014 as an example: the industrial 
proportion was 44.26% in the low-level region, 48.56% 
in the medium-level region, and 49.52% in the high-level 
region. In other words, this implies that higher industrial 
proportion is always accompanied by higher energy 
consumption, thus leading to higher CI. In addition, the 
urbanization level played the most important role in CI 
growth in the low-level region. 

As for the last two factors, TO and FDI, these 
two variables were used together to stand for trade 
liberalization. It can be seen from Table 5 that the 
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effects of FDI and TO on CI reduction were different in 
different models. The estimated coefficient of foreign 
direct investment (FDI) was not significant in model 2, 
which indicated that there was no significant relationship 
between FDI and CI in the low-level region. Although 
many scholars believe that FDI can effectively promote 
the reduction of CI in China [44], the results from our 
paper show that the effect of FDI on reducing CI was very 
limited in the low-level region. The underlying cause  
may be the variation in technology spillovers, which 
weaken gradually along with economic growth. However, 
FDI has a positive effect on CI reduction in both the 
medium-level and high-level regions, which means that  
an increase in FDI will inhibit CI growth. With regard 
to the variable TO, the estimated coefficient of TO 
was negative and statistically significant in model 2, 
whereas it was positive and statistically significant in 
model 3. However, it was not statistically significant in 
model 4. In other words, the impact of trade openness 
on CI is indefinite, and the main reason may lie in the 
significant regional differences in types of import and 
export products. Specifically, the main import and export 
products in the low-level region are always high value-
added products. In contrast, raw materials and low value-
added products were the main goods for import and 
export trade in the medium- and low-level regions. Thus, 
the higher the total import and export volume, the higher 
the CI.

Conclusions 

Major Conclusions

In this paper we first calculate the values of CI in 30 
provinces in China during the period from 1995 to 2014. 
Then, by combining the CV and the Gini coefficient, this 
paper further analyzed the spatiotemporal CI dynamics 
in those 30 provinces and classified all provinces into 
three regions: low-, medium-, and high-level. Finally, by 
applying the panel data and FGLS method, we identified 
the influencing factors of CI at both the national and 
regional levels. The results are: 
1) The values of CI in China decreased from 0.501 tc per 

10,000 yuan in 1995 to 0.204 tc per 10,000 yuan in 
2014, with an annual growth rate of -4.62%.

2) During the study period, the CV increased steadily 
from 0.693 to 0.900, and the Gini coefficient also 
increased steadily from 0.314 to 0.408. This indicated 
that the difference between provinces in CI has 
increased gradually, posing a challenge for achieving 
China’s CI reduction target.

3) From the national perspective, it was found that 
economic level, foreign direct investment and trade 
openness had a negative effect on CI, indicating 
that these three factors acted as disincentives to CI. 
In contrast, both coal consumption and industrial 
proportion played a role in increasing CI. In addition, 
the urbanization level was proven to be the most 

important factor in CI, which indicated that CI in 
China can be reduced by controlling the pace of 
urbanization.

4) From the regional perspective, the dominant factor in CI 
varied by region. Specifically, in the low-level region, 
the dominant factor influencing CI is urbanization, 
followed by economic level; in the medium-level 
region, the two most important influencing factors are 
urbanization level and coal consumption; in the high-
level region, the top two factors are coal consumption 
and industrial proportion. In summary, there are 
significant differences in the development of different 
regions, which largely explained the differences in 
the relationships between the variables. Thus, each 
region should pay more heed to its own particular 
characteristics.

Policy Implications

China has promised that its carbon dioxide emissions 
will peak in 2030, and CI will then be reduced by  
60-65% compared to the level in 2005. According to the 
conclusions drawn in this study, policy suggestions are 
proposed as follows:
1) The difference in CI between provinces in China 

has consistently grown wider. Thus, using the same 
carbon reduction goal for all the provinces is not only 
unscientific but also unfair. In consideration of the 
tremendous differences, when setting CI reduction 
targets, policymakers must take into account the 
specific situation of each province. The provinces  
with low average CI were usually located in 
southeastern China, while the provinces with high 
average CI were mainly located in northern China. 
Considering the need for winter heating in northern 
China, the CI target in this region should be slightly 
higher.

2) From the national perspective, urbanization level 
is the most important factor affecting China’s CI. It 
is the quality of urbanization that matters, not the 
pace. In China, the government has a major impact 
on urbanization development and urban planning. 
Therefore, moving forward with the pilot project to 
build low-carbon cities and using effective space-time 
allocation of land resources will effectively guide the 
development pattern. In particular, the government 
should: 1) establish an incentive mechanism for land-
intensive use and prevent new urban construction 
from being over-dependent on resource consumption, 
which may lead to low-quality urbanization; 2) 
carefully manage the relationship between urban space 
expansion and ecological environmental protection 
and reasonably demarcate the border of urban growth; 
and 3) reduce carbon emissions, use measures such 
as reducing surface hardening, making central 
heating available in communities, constructing green 
buildings and low-carbon infrastructure, reducing 
traffic congestion, and increase the proportion of 
urban public green space.
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3) From the national perspective, different measures 
need to be taken in different CI regions. In low-level 
regions, improvement in the quality of urbanization 
and economic development are most important. 
Hence, in this region possible solutions to CI  
reduction include giving full play to the role of  
human capital, developing high-tech small and 
medium enterprises (SMEs), and giving more  
emphasis to commercial and financial services. 
Vigorously optimizing the energy structure is 
the most urgent task in the medium-level region. 
Improving energy efficiency is also needed in this 
region. Finally, in the high-level region, the most 
effective way to reduce CI is optimizing the industrial 
structure. Specifically, the government should 
renovate and upgrade traditional industries; reduce 
synthetic energy consumption by industry; limit the 
development of iron, steel, cement, and other high-
energy-consuming industries; and raise industry 
access standards. It should also guide and cultivate 
tertiary industry, raising the proportion of tertiary 
industry in regional economies.
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